# Probability and Random Processes EES 315 

## Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th<br>Summary of Chapters 11-13

## Chapter 6 vs. Chapter 11

Joint probability

## Joint pmf

$$
P(\underbrace{A \cap B}_{\text {Joint event }})
$$

$$
A=[X=x]
$$

$$
B=[Y=y]
$$

$$
p_{X, Y}(x, y)=P[X=x, Y=y]
$$

Conditional pmf

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \\
& =\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{p_{Y}(y)}
\end{aligned}
$$

Events $A$ and $B$ are independent:

$$
P(A \cap B)=P(A) P(B)
$$

RVs $X$ and $Y$ are independent:
$p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ for any $x$ and $y$

## i.i.d. RVs

- Two random variables $X$ and $Y$ said to be identically distributed if
$p_{X}(c)=p_{Y}(c)$ for all $c$
- Two random variables $X$ and $Y$ are said to be independent and identically distributed (i.i.d.) if
$X$ and $Y$ are both independent and identically distributed.
- Example: Roll a dice twice.
- Let $X$ be the result from the first roll.
- Let $Y$ be the result from the second roll.


## Chapter 9 vs. Section 10.3

## One Discrete RV

## Two Discrete RVs

$$
\begin{gathered}
\mathbb{E} X=\sum_{x} x p_{X}(x) \\
\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x) \\
\mathbb{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)
\end{gathered}
$$

$$
\mathbb{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)
$$

$$
\underset{\sim}{\mathbb{E}}[X Y]=\sum_{x} \sum_{v} x y p_{X, Y}(x, y)
$$

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2} \\
\sigma_{X} & =\sqrt{\operatorname{Var}[X]}
\end{aligned}
$$

Covariance

$$
\begin{aligned}
\operatorname{Cov}[X, Y] & =\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)] \\
& =\mathbb{E}[X Y]-(\mathbb{E} X)(\mathbb{E} Y) \\
\rho_{X, Y} & =\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}} \quad \begin{array}{l}
\text { Correlation } \\
\text { coefficient }
\end{array}
\end{aligned}
$$

## Correlation

- Correlation measures a specific kind of dependency.
- Dependence $=$ statistical relationship between two random variables (or two sets of data).
- Correlation measures "linear" relationship between two random variables.


## Extension to more than 2 RVs

- Consider $n$ random variables $X_{1}, X_{2}$, and $X_{n}$
- Joint pmf:

$$
p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left[X_{1}=x_{1} ; X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right]
$$

- They are said to be identically distributed if

$$
p_{X_{1}}(c)=p_{X_{2}}(c)=\cdots=p_{X_{n}}(c) \text { for all } c
$$

- They are said to be independent if

$$
p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right) \cdots p_{X_{n}}\left(x_{n}\right)
$$

- They are said to be independent and identically distributed (i.i.d.) if $X_{1}, X_{2}$, and $X_{n}$ are both independent and identically distributed.


## CH12: Limiting Theorems

- Consider a sequence of i.i.d. random variables $X_{1}, X_{2}$, and $X_{n}$
- Let $m=\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[X_{2}\right]=\cdots$
- Let $\sigma^{2}=\operatorname{Var}\left[X_{1}\right]=\operatorname{Var}\left[X_{2}\right]=\cdots$
- Law of Large Numbers (LLN):

The sample means

$$
M_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}
$$

will converge to the shared expected value $m$ as $n \rightarrow \infty$.

- Corollary: relative frequency will converge to probability.
- Central Limit Theorem (CLT):

For $n$ large enough, we can approximate their sum

$$
S_{n}=\sum_{k=1}^{n} X_{k}
$$

by a Gaussian random variable with the mean $m n$ and variance $n \sigma^{2}$.

## Sum of $n$ Bernoulli RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d. Bernoulli $(p)$.
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.


## A Bernoulli RV

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d. Bernoulli( $p$ ).
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.
- $n=1$ :



## Sum of two Bernoulli RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d. Bernoulli $(p)$.
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.
- $n=2$ :



## Sum of five Bernoulli RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d. Bernoulli $(p)$.
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.
- $n=5$ :



## Sum of ten Bernoulli RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d. Bernoulli $(p)$.
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.
- $n=10$ :



## Sum of 20 Bernoulli RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d. Bernoulli $(p)$.
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.
- $n=20$ :



## Sum of 30 Bernoulli RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d. Bernoulli $(p)$.
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.
- $n=30$ :



## Sum of n "Arbitrary" Discrete RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d.
- Here is their shared pmf:
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.



## Sum of n "Arbitrary" Discrete RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d.
- Here is their shared pmf:
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.






## Sum of n "Arbitrary" Discrete RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d.
- Here is their shared pmf:
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.






## Sum of n "Arbitrary" Discrete RVs

- Let
- $X_{1}, X_{2}, \ldots$ be i.i.d.
- Here is their shared pmf:
- $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Let's try to plot the pmf of $S_{n}$.



## CH13: Three Types of RVs

## Discrete RV

cdf is a staircase
function with jumps whose size at $x=c$ gives $P[X=c]$.


Continuous RV
cdf is a continuous function.


## Mixed RV



